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An Introduction to Simulated
Evolutionary Optimization

David B. Fogel, Member, IEEE

Abstract—Natural evolution is a population-based optimization
process. Simulating this process on a computer results in stochas-
tic optimization techniques that can often outperform classical
methods of optimization when applied to difficult real-world
problems. There are currently three main avenues of research in
simulated evolution: genetic algorithms, evolution strategies, and
evolutionary programming. Each method emphasizes a different
facet of natural evolution. Genetic algorithms stress chromosomal
operators. Evolution strategies emphasize behavioral changes at
the level of the individual. Evolutionary programming stresses
behavioral change at the level of the species. The development
of each of these procedures over the past 35 years is described.
Some recent efforts in these areas are reviewed.

I. INTRODUCTION

HE fundamental approach to optimization is to formulate

a single standard of measurement—a cost function—that
summarizes the performance or value of a decision and itera-
tively improve this performance by selecting from among the
available alternatives. Most classical methods of optimization
generate a deterministic sequence of trial solutions based on
the gradient or higher-order statistics of the cost function [1,
chaps. 8-10]. Under regularity conditions on this function,
these techniques can be shown to generate sequences that
asymptotically converge to locally optimal solutions, and in
certain cases they converge exponentially fast {2, pp. 12-15].
Variations on these procedures are often applied to train-
ing neural networks (backpropagation) [3], [4], or estimating
parameters in system identification and adaptive control ap-
plications (recursive prediction error methods, Newton-Gauss)
[2, pp. 22-23], [5]. But the methods often fail to perform
adequately when random perturbations are imposed on the
cost function. Further, locally optimal solutions often prove
insufficient for real-world engineering problems.

Darwinian evolution is intrinsically a robust search and
optimization mechanism. Evolved biota demonstrate optimized
complex behavior at every level: the cell, the organ, the
individual, and the population. The problems that biological
species have solved are typified by chaos, chance, temporality,
and nonlinear interactivity. These are also characteristics of
problems that have proved to be especially intractable to
classic methods of optimization. The evolutionary process
can be applied to problems where heuristic solutions are not
available or generally lead to unsatisfactory results.

The most widely accepted collection of evolutionary theo-
ries is the neo-Darwinian paradigm. These arguments assert
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that the history of life can be fully accounted for by physical
processes operating on and within populations and species [6,
p- 39]. These processes are reproduction, mutation, competi-
tion, and selection. Reproduction is an obvious property of
extant species. Further, species have such great reproductive
potential that their population size would increase at an expo-
nential rate if all individuals of the species were to reproduce
successfully [7], [8, p. 479]. Reproduction is accomplished
through the transfer of an individual’s genetic program (either
asexually or sexually) to progeny. Mutation, in a positively
entropic system, is guaranteed, in that replication errors during
information transfer will necessarily occur. Competition is a
consequence of expanding populations in a finite resource
space. Selection is the inevitable result of competitive repli-
cation as species fill the available space. Evolution becomes
the inescapable result of interacting basic physical statistical
processes ([9], [10, p. 25], [11] and others).

Individuals and species can be viewed as a duality of their
genetic program, the genotype, and their expressed behavioral
traits, the phenotype. The genotype provides a mechanism for
the storage of experiential evidence, of historically acquired
information. Unfortunately, the results of genetic variations
are generally unpredictable due to the universal effects of
pleiotropy and polygeny (Fig. 1) [8], [12], [13], [14, p. 224],
[15]1-[19], [20, p. 296). Pleiotropy is the effect that a single
gene may simultaneously affect several phenotypic traits.
Polygeny is the effect that a single phenotypic characteristic
may be determined by the simultaneous interaction of many
genes. There are no one-gene, one-trait relationships in natural
evolved systems. The phenotype varies as a complex, non-
linear function of the interaction between underlying genetic
structures and current environmental conditions. Very different
genetic structures may code for equivalent behaviors, just as
diverse computer programs can generate similar functions.

Selection directly acts only on the expressed behaviors of
individuals and species [19, pp. 477-478]. Wright [21] offered
the concept of adaptive topography to describe the fitness
of individuals and species (minimally, isolated reproductive
populations termed demes). A population of genotypes maps
to respective phenotypes (sensu Lewontin [22]), which are in
turn mapped onto the adaptive topography (Fig. 2). Each peak
corresponds to an optimized collection of phenotypes, and thus
one or more sets of optimized genotypes. Evolution probabilis-
tically proceeds up the slopes of the topography toward peaks
as selection culls inappropriate phenotypic variants.

Others [11], [23, pp. 400-401] have suggested that it is more
appropriate to view the adaptive landscape from an inverted
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Fig. 1. Pleiotropy is the effect that a single gene may simultaneously affect
several phenotypic traits. Polygeny is the effect that a single phenotypic
characteristic may be determined by the simultancous interaction of many
genes. These one-to-many and many-to-one mappings are pervasive in natural
systems. As a result, even small changes to a single gene may induce a raft
of behavioral changes in the individual (after [18]).

Fig. 2. Wright’s adaptive topology, inverted. An adaptive topography, or
adaptive landscape, is defined to represent the fitness of all possible phe-
notypes. Wright [21] proposed that as selection culls the least appropriate
existing behaviors relative to others in the population, the population advances
to areas of higher fitness on the landscape. Atmar [11] and others have
suggested viewing the topography from an inverted perspective. Populations
then advance to areas of lower behavioral error.

position. The peaks become troughs, “minimized prediction
error entropy wells” [11]. Such a viewpoint is intuitively
appealing. Searching for peaks depicts evolution as a slowly
advancing, tedious, uncertain process. Moreover, there appears
to be a certain fragility to an evolving phyletic line; an
optimized population might be expected to quickly fall off
the peak under slight perturbations. The inverted topography
leaves an altogether different impression. Populations advance
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rapidly, falling down the walls of the error troughs until their
cohesive set of interrelated behaviors are optimized, at which
point stagnation occurs. If the topography is generally static,
rapid descents will be followed by long periods of stasis. If,
however, the topography is in continual flux, stagnation may
never set in.

Viewed in this manner, evolution is an obvious optimizing
problem-solving process. Selection drives phenotypes as close
to the optimum as possible, given initial conditions and
environmental constraints. But the environment is continually
changing. Species lag behind, constantly evolving toward
a new optimum. No organism should be viewed as being
perfectly adapted to its environment. The suboptimality of
behavior is to be expected in any dynamic environment that
mandates trade-offs between behavioral requirements. But
selection never ceases to operate, regardless of the population’s
position on the topography.

Mayr [19, p. 532] has summarized some of the more salient
characteristics of the neo-Darwinian paradigm. These include:

1)

2)

The individual is the primary target of selection.
Genetic variation is largely a chance phenomenon. Sto-
chastic processes play a significant role in evolution.
Genotypic variation is largely a product of recombina-
tion and “only ultimately of mutation.”

“Gradual” evolution may incorporate phenotypic discon-
tinuities.

Not all phenotypic changes are necessarily consequences
of ad hoc natural selection.

Evolution is a change in adaptation and diversity, not
merely a change in gene frequencies.

Selection is probabilistic, not deterministic.

3)
4)
5)
6)

7
Simuiations of evolution should rely on these foundations.

II. GENETIC ALGORITHMS

Fraser [24]-[28], Bremermann et al. [29]-[36], Reed et al.
(371, and Holland [38], [39] proposed similar algorithms that
simulate genetic systems. These procedures are now described
by the term genetic algorithms and are typically implemented
as follows:

1) The problem to be addressed is defined and captured
in an objective function that indicates the fitness of any
potential solution.

A population of candidate solutions is initialized subject
to certain constraints. Typically, each trial solution is
coded as a vector z, termed a chromosome, with ele-
ments being described as genes and varying values at
specific positions called alleles. Holland [39, pp. 70-72]
suggested that all solutions should be represented by
binary strings. For example, if it were desired to find
the scalar value z that maximizes:

2)

F(z) = —z?,

then a finite range of values for x would be selected
and the minimum possible value in the range would be
represented by the string {0 . .. 0}, with the maximum
value being represented by the string {1 ... 1}. The de-
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No. String Fitness % of Total
1 01101 169 14.4
2 11000 576 49.2
3 01000 64 55
4 10011 361 30.9
Total 1170 100.0

Fig. 3. Roulette wheel selection in genetic algorithms. Selection in genetic algorithms is often accomplished via differential
reproduction according to fitness. In the typical approach, each chromosome is given a probability of being copied into the next
generation that is proportional to its fitness relative to all other chromosomes in the population. Successive trials are conducted in
which a chromosome is selected, until all available positions are filled. Those chromosomes with above-average fitness will tend to
generate more copies than those with below-average fitness. The figure is adapted from [143].

sired degree of precision would indicate the appropriate
length of the binary coding.

Each chromosome, z;, i =1, ... , P, in the population
is decoded into a form appropriate for evaluation and
is then assigned a fitness score, u(z;) according to the
objective.

Each chromosome is assigned a probability of repro-
duction, p;, ¢ = 1, ..., P, so that its likelihood of
being selected is proportional to its fitness relative to
the other chromosomes in the population. If the fitness
of each chromosome is a strictly positive number to
be maximized, this is often accomplished using roulette
wheel selection (see Fig. 3).

According to the assigned probabilities of reproduction,
pi.i=1, ..., P, anew population of chromosomes is
generated by probabilistically selecting strings from the
current population. The selected chromosomes generate
“offspring” via the use of specific genetic operators,
such as crossover and bit mutation. Crossover is applied
to two chromosomes (parents) and creates two new
chromosomes (offspring) by selecting a random position
along the coding and splicing the section that appears
before the selected position in the first string with the
section that appears after the selected position in the
second string, and vice versa (see Fig. 4). Other, more
sophisticated, crossover operators have been introduced
and will be discussed later. Bit mutation simply offers
the chance to flip each bit in the coding of a new
solution. Typical values for the probabilities of crossover
and bit mutation range from 0.6 to 0.95 and 0.001 to
0.01, respectively [40], [41].

The process is halted if a suitable solution has been
found, or if the available computing time has expired;
otherwise the process proceeds to step (3) where the new
chromosomes are scored and the cycle is repeated.

For example, suppose the task is to find a vector of 100
bits {0,1} such that the sum of all of the bits in the vector is
maximized. The objective function could be written as:

100

plz) = in,

where z is a vector of 100 symbols from {0,1}. Any such
vector z could be scored with respect to u(z) and would

3)

4)

5)

6)

Crossover Point
Parent#1: 110110111101 Offspring#1: 10100111101
_)
Parcnt#2: 10100000100 Offspring#2: 11010000100

Fig. 4. The one-point crossover operator. A typical method of recombination
in genetic algorithms is to select two parents and randomly choose a splicing
point along the chromosomes. The segments from the two parents are
exchanged and two new offspring are created.

receive a fitness rating ranging from zero to 100. Let an initial
population of 100 parents be selected completely at random
and subjected to roulette wheel selection in light of p(z), with
the probabilities of crossover and bit mutation being 0.8 and
0.01, respectively. Fig. S shows the rate of improvement of the
best vector in the population, and the average of all parents,
at each generation (one complete iteration of steps 3—6) under
such conditions, The process rapidly converges on vectors of
all 1’s.

There are a number of issues that must be addressed when
using a genetic algorithm. For example, the necessity for
binary codings has received considerable criticism [42]-[44].
To understand the motivation for using bit strings, the notion
of a schema must be introduced. Consider a string of symbols
from an alphabet A. Suppose that some of the components of
the string are held fixed while others are free to vary. Define a
wild card symbol, #, that matches any symbol from A. A string
with fixed and variable symbols defines a schema. Consider the
string {O1##}, defined over the union of {#} and the alphabet
A = {0,1}. This set includes {0100}, {0101}, {0110} and
{0111}. Holland [39, pp. 66-74] recognized that every string
that is evaluated actually offers partial information about the
expected fitness of all possible schemata in which that string
resides. That is, if the string {0000} is evaluated to have
some fitness, then partial information is also received about the
worth of sampling from variations in {O###), {#0##), {#00#],
{#0#0}, and so forth. This characteristic is termed implicit
parallelism, as it is through a single sample that information
is gained with respect to many schemata. Holland [39, p.
71] speculated that it would be beneficial to maximize the
number of schemata being sampled, thus providing maximum
implicit parallelism, and proved that this is achieved for
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Fig. 5. The rate of optimization in a simple binary coding problem using a standard genetic algorithm. The curves indicate the fitness
of the best chromosomes in the population and the mean fitness of all parents at each generation. The optimum fitness is 100 units.

|A| = 2. Binary strings were therefore suggested as a universal
representation.

The use of binary strings is not universally accepted in
genetic algorithm literature, however. Michalewicz [44, p. 82]
indicates that for real-valued numerical optimization problems,
floating-point representations outperform binary representa-
tions because they are more consistent, more precise, and lead
to faster execution. But Michalewicz [44, p. 75] also claims
that genetic algorithms perform poorly when the state space
of possible solutions is extremely large, as would be required
for high-precision numerical optimization of many variables
that could take on real-values in a large range. This claim is
perhaps too broad. The size of the state space alone does not
determine the efficiency of the genetic algorithm, regardless
of the choice of representation. Very large state spaces can
sometimes be searched quite efficiently, and relatively small
state spaces sometimes provide significant difficulties. But it
is fair to say that maximizing implicit parallelism will not
always provide for optimum performance. Many researchers in
genetic algorithms have foregone the bit strings suggested by
Holland [39, pp. 70-72] and have achieved reasonable results
to difficult problems [44]-[47].

Selection in proportion to fitness can be problematic. There
are two practical considerations: 1) roulette wheel selection
depends upon positive values, and 2) simply adding a large
constant value to the objective function can eliminate selec-
tion, with the algorithm then proceeding as a purely random
walk. There are several heuristics that have been devised to
compensate for these issues. For example, the fitness of all
parents can be scaled relative to the lowest fitness in the
population, or proportional selection can be based on ranking
by fitness. Selection based on ranking also eliminates problems
with functions that have large offsets.

One mathematical problem with selecting parents to repro-
duce in proportion to their relative fitness is that this procedure
cannot ensure asymptotic convergence to a global optimum
[48]. The best chromosome in the population may be lost
at any generation, and there is no assurance that any gains
made up to a given generation will be retained in future
generations. This can be overcome by employing a heuristic
termed elitist selection [49], which simply always retains the
best chromosome in the population. This procedure guarantees
asymptotic convergence [48], [50], [51], but the specific rates
of convergence vary by problem and are generally unknown.

The crossover operator has been termed the distinguishing
feature of genetic algorithms [52, pp. 17-18]. Holland [39, pp.
110-111] indicates that crossover provides the main search
operator while bit mutation simply serves as a background
operator to ensure that all possible alleles can enter the
population. The probabilities commonly assigned to crossover
and bit mutation reflect this philosophical view. But the choice
of crossover operator is not straightforward.

Holland [39, p. 160], and others [53], [54], propose that
genetic algorithms work by identifying good “building blocks”
and eventually combining these to get larger building blocks.
This idea has become known as the building block hypothesis.
The hypothesis suggests that a one-point crossover operator
would perform better than an operator that, say, took one bit
from either parent with equal probability (uniform crossover),
because it could maintain sequences (blocks) of “good code”
that are associated with above-average performance and not
disrupt their linkage. But this has not been clearly demon-
strated in the literature. Syswerda [55] conducted function
optimization experiments with uniform crossover, two-point
crossover and one-point crossover. Uniform crossover pro-
vided generally better solutions with less computational effort.
Moreover, it has been noted that sections of code that reside
at opposite ends of a chromosome are more likely to be
disrupted under one-point crossover than are sections that are
near the middle of the chromosome. Holland [39, pp. 106-109]
proposed an inversion operator that would reverse the index
position for a section of the chromosome, so that linkages
could be constructed between arbitrary genes. But inversion
has not been found to be useful in practice [52, p. 21]. The
relevance of the building block hypothesis is presently unclear,
but its value is likely to vary significantly by problem.

Premature convergence is another important concern in
genetic algorithms. This occurs when the population of chro-
mosomes reaches a configuration such that crossover no longer
produces offspring that can outperform their parents, as must
be the case in a homogeneous population. Under such cir-
cumstances, all standard forms of crossover simply regenerate
the current parents. Any further optimization relies solely on
bit mutation and can be quite slow. Premature convergence
is often observed in genetic algorithm research ([40], [52, pp.
25, 26], [56], [57], and others) because of the exponential
reproduction of the best observed chromosomes coupled with
the strong emphasis on crossover. Davis [52, pp. 26, 27]
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Fig. 6. Comparing dynamic parameter encoding to more standard genetic algorithm coding techniques. (a) A two-dimensional,
inverted illustration of a quadratic bowl. (b) Optimization on a three-dimensional quadratic bowl. (c) An inverted illustration of the
Shekel’s foxholes problem. (d) Optimization on the Shekel’s foxholes problem. Dynamic parameter encoding offers the possibility
of increasing the precision of a solution on-line, but may also encounter problems with premature convergence.

recommends that when the population converges on a chromo-
some that would require the simultaneous mutation of many
bits in order to improve it, the run is practically completed
and it should either be restarted using a different random seed,
or hill-climbing heuristics should be employed to search for
improvements.

One recent proposal for alleviating the problems associated
with premature convergence was offered in [41]. The method,
termed dynamic parameter encoding (DPE), dynamically re-
sizes the available range of each parameter. Broadly, when
a heuristic suggests that the population has converged, the
minimum and maximum values for the range are resized
to a smaller window and the process is iterated. In this
manner, DPE can zoom in on solutions that are closer to

the global optimum than provided by the initial precision.
Schraudolph [58] has kindly provided results from experiments
with DPE presented in [41]. As indicated in Fig. 6, DPE clearly
outperforms the standard genetic algorithm when searching a
quadratic bowl, but actually performs worse on a multimodal
function (Shekel’s foxholes). The effectiveness of DPE is an
open, promising area of research. DPE only zooms in, so the
initial range of parameters must be set to include the global
optimum or it will not be found. But it would be relatively
straightforward to include a mechanism in DPE to expand the
search window, as well as reduce it.

Although many open questions remain, genetic algorithms
have been used to successfully address diverse practical opti-
mization problems [59]. While some researchers do not view



genetic algorithms as function optimization procedures per se
(e.g., [60]), they are commonly used for precisely that purpose.
Current research efforts include: 1) developing a stronger
mathematical foundation for the genetic algorithm as an opti-
mization technique [41], [48], [61], [62], including analysis of
classes of problems that are difficult for genetic algorithms
[63]-[66] as well as the sensitivity to performance of the
general technique to various operator and parameter settings
[42], [44], [67]1-[70]; 2) comparing genetic algorithms to other
optimization methods and examining the manner in which they
can be enhanced by incorporating other procedures such as
simulated annealing [71]1-[73]; 3) using genetic algorithms for
computer programming and engineering problems [74]-[79];
4) applying genetic algorithms to machine learning rule-based
classifier systems [80]-[84]; 5) using genetic algorithms as
a basis for artificial life simulations [85], [86, pp. 186-195};
and 6) implementing genetic algorithms on parallel machines
[87]-[89]. The most recent investigations can be found in [90].

III. EVOLUTION STRATEGIES AND
EVOLUTIONARY PROGRAMMING

An alternative approach to simulating evolution was in-
dependently adopted by Schwefel [91] and Rechenberg [92]
collaborating in Germany, and L. Fogel [93], [94] in the United
States, and later pursued by [95]-{99], among others. These
models, commonly described by the terms evolution strategies
or evolutionary programming, or more broadly as evolutionary
algorithms [87], [100] (although many authors use this term
to describe the entire field of simulated evolution), emphasize
the behavioral link between parents and offspring, or between
reproductive populations, rather than the genetic link. When
applied to real-valued function optimization, the most simple
method is implemented as follows:

1) The problem is defined as finding the real-valued n-
dimensional vector x that is associated with the ex-
tremum of a functional F(z) : R* — R. Without loss
of generality, let the procedure be implemented as a
minimization process.

An initial population of parent vectors, z;, ¢ =1, ...,
P, is selected at random from a feasible range in each
dimension. The distribution of initial trials is typically
uniform.

An offspring vector, £}, i =1, ..., P, is created from
each parent z; by adding a Gaussian random variable
with zero mean and preselected standard deviation to
each component of z;.

Selection then determines which of these vectors to
maintain by comparing the errors F(z;) and F(z}),
1,..., P. The P vectors that possess the least
error become the new parents for the next generation.
The process of generating new trials and selecting those
with least error continues until a sufficient solution is
reached or the available computation is exhausted.

In this model, each component of a trial solution is viewed
as a behavioral trait, not as a gene. A genetic source for these
phenotypic traits is presumed, but the nature of the linkage
is not detailed. It is assumed that whatever genetic transfor-

2)

3)

4)

7 =

5)
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mations occur, the resulting change in each behavioral trait
will follow a Gaussian distribution with zero mean difference
and some standard deviation. Specific genetic alterations can
affect many phenotypic characteristics due to pleiotropy and
polygeny (Fig. 1). It is therefore appropriate to simultancously
vary all of the components of a parent in the creation of a
new offspring.

The original efforts in evolution strategies [91], [92] exam-
ined the preceding algorithm but focused on a single parent-
single offspring search. This was termed a (14+1)— E'S in that
a single offspring is created from a single parent and both are
placed in competition for survival, with selection eliminating
the poorer solution. There were two main drawbacks to this
approach when viewed as a practical optimization algorithm:
1) the constant standard deviation (step size) in each dimension
made the procedure slow to converge on optimal solutions,
and 2) the brittle nature of a point-to-point search made the
procedure susceptible to stagnation at local minima (although
the procedure can be shown to asymptotically converge to the
global optimum vector z) [101].

Rechenberg [92] defined the expected convergence rate of
the algorithm as the ratio of the average distance covered
toward the optimum and the number of trials required to
achieve this improvement. For a quadratic function

)= 4
=1

where z is an n-dimensional vector of reals, and x; denotes
the ¢th component of =, Rechenberg [92] demonstrated that
the optimum expected convergence rate is given when o
1.224r/n, where o is the standard deviation of the zero
mean Gaussian perturbation, = denotes the current Euclidean
distance from the optimumn and there are n dimensions. Thus,
for this simple function the optimum convergence rate is
obtained when the average step size is proportional to the
square root of the error function and inversely proportional
to the number of variables. Additional analyses have been
conducted on other functions and the results have yielded
similar forms for setting the standard deviation [102].

The use of multiple parents and offspring in evolution
strategies was developed by Schwefel [103], [104]. Two
approaches are currently explored, denoted by (p+ A) — ES
and (u, A) — ES. In the former, u parents are used to create A
offspring and all solutions compete for survival, with the best
being selected as parents of the next generation. In the latter,
only the A offspring compete for survival, and the parents are
completely replaced each generation. That is, the lifespan of
every solution is limited to a single generation. Increasing the
population size increases the rate of optimization over a fixed
number of generations.

To provide a very simple example, suppose it is desired to
find the minimum of the function in (1) for » = 3. Let the
original population consist of 30 parents, with each component
initialized in accordance with a uniform distribution over
[—5.12, 5.12] (after [40]). Let one offspring be created from
each parent by adding a Gaussian random variable with mean
zero and variance equal to the error score of the parent divided

N

~
~
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Fig. 7. The rate of optimization using a primitive version of evolution strate-
gies on the three-dimensional quadratic bowl, Thirty parents are maintained at
cach generation. Offspring are created by adding a Gaussian random variable
to each component.

by the square of the number of dimensions (32 = 9) to each
component. Let selection simply retain the best 30 vectors in
the population of parents and offspring. Fig. 7 indicates the
rate of optimization of the best vector in the population as
a function of the number of generations. The process rapidly
converges close to the unique global optimum.

Rather than using a heuristic schedule for reducing the
step size over time, Schwefel [104] developed the idea of
making the distribution of new trials from each parent an
additional adaptive parameter (Rechenberg, personal commu-
nication, indicates that he introduced the idea in 1967). In this
procedure, each solution vector comprises not only the trial
vector z of n dimensions, but a perturbation vector o which
provides instructions on how to mutate z and is itself subject
to mutation. For example, if = is the current position vector
and o is a vector of variances corresponding to each dimension
of z, then a new solution vector (z’,0") could be created as:

o= oiexp(’'-N(0,1)+7- Ni(0,1))
.’II:‘ = =z + N(OJQ)

where i = 1, ..., n, and N(0, 1) represents a single standard
Gaussian random variable, N;(0, 1) represents the ith indepen-
dent identically distributed standard Gaussian, and = and 7’
are operator set parameters which define global and individual
step-sizes [102]. In this manner, the evolution strategy can self-
adapt to the width of the error surface and more appropriately
distribute trials. This method was extended again [104] to
incorporate correlated mutations so that the distribution of new
trials could adapt to contours on the error surface (Fig. 8).

Finally, additional extensions were made to evolution strate-
gies to include methods for recombining individual solutions
in the creation of new offspring. There are many proposed
procedures. These include selecting individual components
from either of two parents at random, averaging individual
components from two parents with a given weighting, and so
forth [102).

The original evolutionary programming approach was sim-
ilar to that of Schwefel and Rechenberg but involved a
more complex problem, that of creating artificial intelligence.
Fogel [94] proposed that intelligent behavior requires the
composite ability to predict one’s environment coupled with a
translation of the predictions into a suitable response in light
of the given goal. To provide maximum generality, in a series

AW

&>  line of equal probability density to place an offspring

Fig. 8. Under independent Gaussian perturbations to each component of
every parent, new trials are are distributed such that the contours of equal
probability are aligned with the coordinate axes (left picture). This will not be
optimal in general because the contours of the response are rarely similarly
aligned. Schwefel [104] suggests a mechanism for incorporating self-adaptive
covariance terms. Under this procedure, new trials can be distributed in any
orientation (right picture). The evolutionary process adapts to the contours of
the response surface, distributing trials so as to maximaize the probability of
discovering improved solutions.

Fig. 9. A finite state machine (FSM) consists of a finite number of states.
For each state, for every possibie input symbol, there is an associated output
symbol and next-state transition. In the figure, input symbols are shown to the
left of the virgule, output symbols are shown to the right. The input alphabet
is {0, 1} and the output alphabet is {a, 3, v}. The machine is presumed to
start in state A. The figure is taken from [144].

of experiments, a simulated environment was described as
sequence of symbols taken from a finite alphabet. The problem
was then defined to evolve an algorithm that would operate on
the sequence of symbols thus far observed in such a manner
as to produce an output symbol that is likely to maximize the
benefit to the algorithm in light of the next symbol to appear
in the environment and a well-defined payoff function. Finite
state machines (FSM’s) [105] provided a useful representation
for the required behavior (Fig. 9).

Evolutionary programming operated on FSM’s as follows:

1) Initially, a population of parent FSM’s is randomly
constructed.
The parents are exposed to the environment; that is, the
sequence of symbols that have been observed up to the
current time. For each parent machine, as each input
symbol is offered to the machine, each output symbol is
compared to the next input symbol. The worth of this
prediction is then measured with respect to the given
payoff function (e.g., all-none, absolute error, squared
error, or any other expression of the meaning of the
symbols). After the last prediction is made, a function

2)



Player B
C D
c (3,9) (0,5)
Player A
D (5,0) (1,1)

Fig. 10. A payoff matrix for the prisoner’s dilemma. Each of two players
must either cooperate (C) or defect (D). The entries in the matrix, (a,b),
indicate the gain to players A and B, respectively. This payoff matrix was
used in simulations in {106]-[108].

of the payoff for each symbol (e.g., average payoff per
symbol) indicates the fitness of the machine.

Offspring machines are created by randomly mutating
each parent machine. There are five possible modes of
random mutation that naturally result from the descrip-
tion of the machine: change an output symbol, change a
state transition, add a state, delete a state, or change the
initial state. The deletion of a state and the changing of
the start state are only allowed when the parent machine
has more than one state. Mutations are chosen with
respect to a probability distribution, which is typically
uniform. The number of mutations per offspring is also
chosen with respect to a probability distribution (e.g.,
Poisson) or may be fixed a priori.

The offspring are evaluated over the existing environ-
ment in the same manner as their parents.

Those machines that provide the greatest payoff are
retained to become parents of the next generation. Typ-
ically, the parent population remains the same size,
simply for convenience.

Steps 3)-5) are iterated until it is required to make an ac-
tual prediction of the next symbol (not yet experienced)
from the environment. The best machine is selected to
generate this prediction, the new symbol is added to
the experienced environment, and the process reverts to
step 2).

3)

4)

5)

6)

The prediction problem is a sequence of static optimization
problems in which the adaptive topography (fitness function)
is time-varying. The process can be easily extended to ab-
stract situations in which the payoffs for individual behaviors
depend not only on an extrinsic payoff function, but also
on the behavior of other individuals in the population. For
example, Fogel [106], [107], following previous foundational
research by Axelrod using genetic algorithms [108], evolved
a population of FSM’s in light of the iterated prisoner’s
dilemma (Fig. 10). Starting with completely random FSM’s
of one to five states, but ultimately possessing a maximum
of eight states, the simulated evolution quickly converged on
mutually cooperative behavior (Fig. 11). The evolving FSM’s
essentially learned to predict the behavior (a sequence of
symbols) of other FSM’s in the evolving population.

Evolutionary programming has recently been applied to
real-valued continuous optimization problems and is virtually
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Fig. 11. (a) The mean of all parents’ scores as a function of the number
generations when using evolutionary programming to simulate an iterated
prisoner’s dilemma incorporating 50 parents coded as finite state machines
(FSM’s). The input alphabet consists of the previous moves for the current
player and the opponent {(C,C), (C,D), (D,C), (D,D)}; the output alphabet
consists of the next move {C,D}. Each FSM plays against every other FSM
in the population over a long series of moves. The results indicate a propensity
to evolve cooperative behavior even though it would appear more beneficial
for an individual to defect on any given play. (b) A typical FSM evolved
after 200 generations when using 100 parents. The cooperative nature of
the machine can be observed by noting that (C,C) typically elicits further
cooperation, and in states 2 and 3, such cooperation will be absorbing. Further,
(D,D) typically elicits further defection, indicating that the machine will not
be taken advantage of during an encounter with a purely selfish machine.
These results appear in [107].
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equivalent in many cases to the procedures used in evolution
strategies. The extension to using self-adapting independent
variances was offered in [109] with procedures for optimizing
the covariance matrix used in generating new trials offered in
[110]. These methods differ from those offered in [104] in that
Gaussian perturbations are appl ied to the self-adaptive param-
eters instead of lognormal perturbations. Initial comparisons
[111], [112] indicate that the procedures in [104] appear to be
more robust than those in [110]. One possible explanation for
this would be that it is easier for variances of individual terms
to transition between small and large values under the method
of [104]. Theoretical and empirical comparison between these
mechanisms is an open area of research.

As currently implemented, there are two essential differ-
ences between evolution strategies and evolutionary program-
ming.

1) Evolution strategies rely on strict deterministic selec-

tion. Evolutionary programming typically emphasizes
the probabilistic nature of selection by conducting a
stochastic tournament for survival at each generation.
The probability that a particular trial solution will be
maintained is made a function of its rank in the popu-
lation.
Evolution strategies typically abstracts coding structures
as analogues of individuals. Evolutionary programming
typically abstracts coding structures as analogues of
distinct species (reproductive populations). Therefore,
evolution strategies may use recombination operations to
generate new trials [111], but evolutionary programming
does not, as there is no sexual communication between
species [100].

2)

The current efforts in evolution strategies and evolutionary
programming follow lines of investigation similar to those
in genetic algorithms: 1) developing mathematical founda-
tions for the procedures [51], {111}, [113], investigating their
computational complexity theoretically and empirically [114],
[115] and combining evolutionary optimization with more
traditional search techniques [116]; 2) using evolutionary
algorithms to train and design neural networks [117}-[121};
3) examining evolutionary algorithms for system identifica-
tion, control, and robotics applications [122]-{127], as well
as pattern recognition problems [128)-[130], along with the
possibility for synergism between evolutionary and fuzzy
systems [131], [132]; 4) applying evolutionary optimization
to machine learning [133]; 5) relating evolutionary models to
biological observations or applications [107], [134}-[137]; and
also 6) designing evolutionary algorithms for implementation
on parallel processing machines [138], [139], [140]. The most
recent investigations can be found in [141], [142].

IV. SUMMARY

Simulated evolution has a long history. Similar ideas and
implementations have been independently invented numerous
times. There are currently three main lines of investiga-
tion: genetic algorithms, evolution strategies, and evolutionary
programming. These methods share many similarities. Each
maintains a population of trial solutions, imposes random

changes to those solutions, and incorporates the use of se-
lection to determine which solutions to maintain into future
generations and which to remove from the pool of trials.
But these methods also have important differences. Genetic
algorithms emphasize models of genetic operators as observed
in nature, such as crossing over, inversion, and point mutation
and apply these to abstracted chromosomes. Evolution strate-
gies and evolutionary programming emphasize mutational
transformations that maintain behavioral linkage between each
parent and its offspring, respectively, at the level of the
individual or the species. Recombination may be appropriately
applied to individuals, but is not applicable for species.

No model can be a complete description of the true system.
Each of the three possible evolutionary approaches described
above is incomplete. But each has also been demonstrated
to be of practical use when applied to difficult optimization
problems. The greatest potential for the application of evolu-
tionary optimization to real-world problems will come from
their implementation on parallel machines, for evolution is
an inherently parallel process. Recent advances in distributed
processing architectures will result in dramatically reduced ex-
ecution times for simulations that would simply be impractical
on current serial computers.

Natural evolution is a robust yet efficient problem-solving
technique. Simulated evolution can be made as robust. The
same procedures can be applied to diverse problems with
relatively little reprogramming. While such efforts will un-
doubtedly continue to address difficult real-world problems,
the ultimate advancement of the field will, as always, rely on
the careful observation and abstraction of the natural process
of evolution.
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