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Abstract  Near infrared spectra were collected 
of potato crisps from potato (Solanum tuberosum) 
cultivars ‘Whitu’ and ‘Fianna’. Pattern recognition 
techniques were used to classify the spectra. Linear 
discriminant analysis performed as well as piecewise 
linear discriminant analysis in identifying the potato 
tuber variety used to produce the potato crisps. The 
success rate in separating the spectra into respective 
classes using discriminant analysis is 93%. This 
suggests that it is possible to use near infrared 
analysis for the purpose of identifying different 
cultivars in single batches of potato crisps. 
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INTRODUCTION

The production of high quality potato (Solanum 
tuberosum L.) crisps by frying thinly sliced sections 
of tuber in oil requires production process settings 
that are cultivar specific. Mixing cultivars in batches 
of tubers to be processed, a common occurrence in 

Use of near infrared spectra to identify cultivar 
in potato (Solanum tuberosum) crisps 

New Zealand because cultivars overlap in maturity, 
has been demonstrated to cause product quality 
variations (Kita 2002). 
	S eparating crisps from different cultivars on the 
processing line is a time consuming task unless 
automated. There are at present no successful 
automated inspection systems to separate crisps 
of different cultivars on a processing line. The 
possibility of using calorimetric techniques (Withers 
1998) for separating cultivars is limited because 
only crisp colour is detected. The use of chemical 
properties of crisps is not possible because crisps 
are destroyed.
	 Near infrared analysis is a widely used tool for 
identification of different materials and chemical 
concentration determination. It has been used to 
determine nitrogen content of potato leaves (Young et 
al. 1997), tuber dry matter content (Dull et al. 1988), 
and disease identification in potatoes (Porteous et al. 
1981). Near infrared analysis combined with pattern 
recognition techniques has been used to identify 
different materials in applications such as sorting 
of plastics for refuse recycling (van den Broek et 
al. 1997) and identification of nitrogen containing 
explosive materials in bomb detection (Lewis et al. 
1997). However, to our knowledge, near infrared 
analysis has not been used to identify cultivar in a 
batch of potato crisps. 
	 This paper describes the results of using near 
infrared analysis to identify potato tuber variety 
used in processed potato crisps. The statistical 
pattern recognition techniques of piecewise 
linear discriminant analysis (PLDA) and linear 
discriminant analysis (LDA) have been selected 
for the identification task. The intention is to use 
near infrared analysis in an automatic potato tuber 
variety identification system.

MATERIALS AND METHODS

Tubers of ‘Fianna’ and ‘Whitu’, whose time 
of availability for processing overlaps, were 
investigated. They were grown at Opiki, south-west 
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of Palmerston North, New Zealand, and had been 
dug for no longer than a week when processed. 
	 The tubers were processed in the standard 
conditions (Withers 1998; Yee 2005) at the processing 
factory in Auckland. They were cut into flat slices of 
1.5 mm and fried in Canola oil in a fryer. Frying time 
was set at 180 s and oil temperature was 180°C. 
	 A total of 192 samples of fried crisps in 20 g 
denominations were collected from the factory 
processing line. The first set contained 102 samples 
of ‘Whitu’, the second 90 samples of ‘Fianna’. The 
samples were then inspected using a NIRSystems 
6500 spectrometer. The spectra corresponded to the 
region between 400 and 2496 nm of the near infrared 
spectrum, representing 525 spectral wavelengths at 
4 nm separation. The measurements were taken in 
reflectance mode and the mathematical treatment 
of the spectral variables was log(1/R), where R 
is the reflected spectral intensity at a specified 
wavelength. 
	 The 192 spectra obtained were divided into two 
sets, a training set of 160 spectra (85 ‘Whitu’ and 
75 ‘Fianna’) and a prediction set of 32 spectra (17 
‘Whitu’ and 15 ‘Fianna’). The spectra were corrected 
for scatter using the piecewise multiple scatter 
correction algorithm of Issakson et al. (1993), with 

a pre-determined optimal piecewise multiple scatter 
correction window size of 260 nm (Yee & Klette 1999). 
Principal components analysis was performed on the 
525 dimensional data set to reduce the dimensionality. 
The first three components explained 99% of the 
variance in the data (see Fig. 1). 
	 Identification of cultivar in a potato crisp sample 
was achieved using linear discriminant analysis and 
piecewise linear discriminant analysis, optimised by 
simplex pattern recognition (Tou & Gonzalez 1974). 
Mathematical details of discriminant computation 
and simplex optimisation are given in Appendix 1.
	 Recognition values are taken as the percentage 
correctly classified in the cultivar class relative to all 
the spectra in the respective cultivar class. In training 
the classifier, the target group chosen was from 
‘Fianna’, because processing this cultivar when the 
process setting is tuned for ‘Whitu’ results in product 
quality variations among the crisps processed from 
‘Fianna’ tubers.
	 Recognition statistics were computed on the two 
data sets. (1) The first recognition statistic refers to the 
data set of 160 spectra used in training the classifier. 
The training set was used solely for assessing the 
prediction abilities of the classifier on data used 
to train the classifier. The recognition statistic is 

Fig. 1  Plot of the principal com-
ponents one, two, and three.
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Table 1  Pattern recognition results in separation of the two varieties of potatoes (Solanum tuberosum). (PLDA, 
piecewise linear discriminant analysis; LDA, linear discriminant analysis.)

	 No. training	 No. correctly	 Recognition 	 No.	 No. correctly	 Recognition
Technique	 set	 classified	 (%)	 independent set	 classified	 (%)

PLDA Whitu	 85	 82	 96	 17	 16	 94
PLDA Fianna	 75	 75	 100 	  15	 14	 93
LDA Whitu	 85	 80	 94	 17	 16	 94
LDA Fianna	 75	 70	 93	 15	 14	 93

a percentage value of tubers correctly classified 
(from crisp spectra) relative to total number of tubers 
present for each respective class in the training data 
set. (2) The second recognition statistic refers to an 
independent set of 32 spectra not used in training the 
classifier. This independent set was used solely for 
assessing the prediction abilities of the classifier on 
data not used to train the classifier. The recognition 
statistic is a percentage value computed from the 
number of tubers correctly classified (from crisp 
spectra) relative to total number of tubers present for 
each respective class in the independent data set.

RESULTS AND DISCUSSION

The classification statistics achieved in computing 
the two classifiers are presented in Table 1. The 
PLDA achieved a recognition value of 100% in 
identifying ‘Fianna’ in the training set. The reverse 
error was a recognition value of 96% in identification 
of ‘Whitu’. By comparison a single LDA achieved 
only a recognition value of 93% in identifying 
‘Fianna’ and a reverse error recognition value of 
94% for identification of ‘Whitu’ in the training set. 
This does not necessarily suggest that PLDA is more 
efficient than LDA in identification of ‘Fianna’ in 
new data, because the more complex PLDA rule will 
be more influenced by peculiarities of the training 
data which will not be present in new data. The 
overall prediction percentages are excellent for the 
independent set (Table 1, column 7), however both 
techniques perform the identification of different 
tuber varieties with equal success rates. Based on 
this, there is insufficient information to determine 
which techniques’ performance was superior.
	 These results demonstrate that spectroscopic 
information, present in potato crisp spectra, allow the 
identification of potato tuber variety. The statistical 
procedures required to identify the two varieties from 
near infrared spectral data have several steps but 
the underlying measurements are simple to obtain, 
and the resulting models are of a high accuracy. 

The measurement using near infrared analysis is 
quicker and cheaper than other direct chemistry based 
methods and has been applied to samples that were 
directly off the production line; based on this, the 
next task is to scale up and automate the procedure 
for automated inspection on the factory floor.
	 PLDA and LDA classifiers have been used 
in this work, however artificial neural networks, 
genetic algorithms and other unsupervised pattern 
recognition techniques may improve the recognition 
percentage even further. Thus the future direction 
of this research will focus on investigating these 
techniques to improve recognition ability and scaling 
up the procedure for 100% automated inspection.
	S ince starch and glucose levels in potato tubers 
are affected by temperature variations and length 
of time in storage, and the amount of glucose has 
an effect on crisp quality (Gamble & Rice 1988), 
near infrared analysis is reliable only on crisps that 
have been produced from tubers stored at the same 
temperature for the same length of time. 
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Appendix 1  Classifier design.

In computation of a linear discriminant, a quantity is calculated for each member in the data set, the quantity is large for 
one class and small for the other class. The classifier then uses a decision boundary that depends on the mean, and can 
be chosen to reflect prior probabilities and the relative severity of wrong decisions. The piecewise linear discriminant 
analysis method for approximating non-linear separating surfaces uses multiple linear discriminants serially grouped 
to form a piecewise approximation of a nonlinear surface. In piecewise linear discriminant analysis (PLDA), linear 
discriminants are calculated sequentially, with each discriminant separating a portion of the patterns in the data space. 
The PLDA classifier is often termed a committee classifier, since the classification of unknown patterns requires the 
entire set of linear discriminants.
	 Figure 2A shows a graphical representation of such a classifier in which each linear discriminant has the same class 
on its pure-class side. Fig. 2B pictorially illustrates the problems associated with independent placement of individual 
linear discriminants.
	 Mathematically the procedure of classification requires the linear discriminant to be calculated such that:
wT X1 > 0	 (1)
wT X2 ≤ 0	 (2)
where X1 represents the data points from class 1, X2 represents data points from class 2, and w is the discriminant 
weight vector. The data products in Equations 1 and 2 are termed discriminant scores. To offset the separating surface 
from the origin, the X1 and X2 vectors are augmented with a constant element. 
	 In the PLDA method a Bayesian classification algorithm is used to calculate the initial discriminant weight vectors 
for the data set, given by:

w X C m m C mi
T

i i
T

i= −− −1 11
2 	 (3)
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Fig. 2  A, Depiction of the three 
piecewise linear discriminants 
calculated sequentially and inde-
pendently to form a classifier. B, 
Classifier after concurrent reop-
timisation.

Fig. 3  A, Start of simplex; B, reflection from low point; C, reflection and expansion away from low point; D, contrac-
tion in one dimension from low point; and E, contraction along all dimensions towards high point.

where wi is the discriminant weight function, X is the data set matrix, C is the covariance matrix, and mi is the mean 
vector.
	 The Bayesian classifier is a statistical method based on incorporating prior beliefs as probabilities. Bayesian classifiers 
assume that the data belong to two multivariate normal distributions (Tou & Gonzalez 1974) which implies that the 
discriminant boundary is a plane. Assumptions of a multivariate normal distribution may be invalid, and consequently, 
the Bayesian discriminant is used only as a starting approximation for the final weight vector.
	 The implementation of PLDA classification uses a popular second form of optimisation known as simplex pattern 
recognition (Ritter et al. 1975). The computational procedure used can be found in Brissey et al. (1979).
	 The simplex method requires function evaluations of a geometric figure consisting in N dimensions, of N+1 points 
(or vertices) and all their interconnecting line segments, polygonal faces etc. For the application of linear discriminant 
optimisation, we are interested in simplexes that are non-degenerate, i.e., that enclose a finite inner N-dimensional 
volume. If any point of a non-degenerate simplex is taken as the origin, then the N other points define vector directions 
that span the N-dimensional vector space.
	 The simplex is started with N+1 points, defining the initial simplex, given by:
wi=wo+λ ei	 (4)
where wo is the original linear discriminant weight vector, wi is the updated linear discriminant weight vector, eis are 
n unit vectors and l is the spanning constant.
	 The simplex uses a procedure of steps, moving the points of the simplex from where the function is lowest in the 
data space to higher points in the data space. The steps comprise of reflections (steps which conserve the volume of the 
data space and maintain nondegeneracy), expansions (which enlarge the data space), and contractions (which reduce 
the data space). These steps are described in Fig. 3. At each step, each point in the simplex is evaluated based on the 
response function. The response function chosen in this application followed that of other researchers investigating 
simplex optimisations (Shaffer 1995) in spectroscopic applications, given as:
ei = Ns e(Ns – Nt) M/σ	 (5)
where ei is the response function, M is the mean discriminant score, s is the standard deviation of discriminant scores 
with mean taken as zero, Ns is the number of class 1 patterns separated, and Nt is the total number of patterns placed 
on the pure side of the discriminant.
	 In the present work, the committee classifier calculated consisted of five linear discriminant weight vectors. Each 
vector was initiated using the Bayes calculation and the simplex algorithm was performed with 1000 iterations. The 
best vector was saved, and the procedure was then repeated until five weight vectors were calculated.




